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1. Introduction

In response to a growing public concern about 
reducing the consumption of oil and other fossil energy 
resources and the necessity for global warming counter-
measures, the popularity of hybrid electric vehicles 
(HEVs), electric vehicles (EVs), plug-in hybrid electric 
vehicles (PHEVs) and other battery-powered vehicles has 
been expanding in the world. With the advancement of IoT 
technology, the development of connected car technology 
has also been promoted.(1) Equipped with Internet access, 
connected cars are expected to provide a diversity of 
services. 

Lithium-ion batteries (LiBs) have recently become the 
mainstream of the power sources for electrified vehicles. 
LiBs have an advantage over lead-acid batteries in energy 
density and weight. However, to use LiBs safely and effi-
ciently, it is indispensable to have a method of diagnosing 
their state and thus protecting them properly. All the electri-
fied vehicles are equipped with battery packs in which two 
or more battery cells are connected to each other to achieve 
the required capacity and voltage. Since the performance of 
each cell varies in response to the operating temperature and 
other conditions of use, it becomes necessary to grasp the 
state of each cell depending on the purpose of use of the 
battery.

Sumitomo Electric Industries, Ltd. has developed a 
state estimation unit into which a LiB state estimation tech-
nology is incorporated, and built this unit into an on-board 
system which can be linked to a server through the Internet. 
This paper describes the in-vehicle evaluation results of the 
system.

2. System Configuration

The configuration of the on-board system we evalu-
ated in this study is shown in Fig. 1. The system consists of 
a battery state estimation unit and on-board wireless 
communication unit. The former is incorporated with a LiB 
state estimation algorithm, while the latter has a function to 
communicate with a cloud server. The battery state estima-
tion unit receives sensor information on the on-board 
battery, such as current and voltage, from the system 
installed in the vehicle, estimates the state of the battery, 

and transmits the estimation results to the cloud server 
through the on-board wireless communication unit.

The on-board system used for this study was config-
ured to receive sensor information from the electric vehicle 
and compute the state of each cell of the in-vehicle battery. 
This study was carried out by incorporating the battery 
state estimation function into an independent unit. 
However, this function can be also incorporated into an 
on-board wireless communication device, battery manage-
ment unit (BMU), or other unit. 

3. Outline of Battery State Estimation System

3-1	 State quantity of battery
For a secondary battery, the state of charge (SOC*1) 

and the state of health (SOH*2) are the key state quantities 
for representing the remaining capacity or the charge 
remaining in the battery. SOH is further divided into 
capacity retention rate (SOH-C) and an increase in internal 
resistance (SOH-R). SOH-C is defined as the ratio of the 
measured capacity of the battery to the initial fully charged 
capacity of the battery when it was new. SOH-R increases 
as the battery deteriorates. The state of power (SOP) is also 
used in practice as an important parameter representing the 
electric power that can be charged/discharged into/from the 
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battery.
Estimating these quantities is important to check if the 

vehicle is controlled optimally to retard the deterioration of 
the battery, use it efficiently, and maximize the fuel effi-
ciency. However, the physical quantities of a battery that 
can be externally measured are only the current, voltage, 
and temperature. It is impossible to directly measure SOC 
and other state quantities. Various techniques are being 
studied at present to estimate these quantities, including an 
open-circuit voltage (OCV) estimation technique, an equiv-
alent circuit model technique that uses an electric circuit to 
represent a battery, and a nonlinear Kalman filter tech-
nique.(2), (3) 

Figure 2 shows the schematic block diagram of the 
battery state estimation system we evaluated in this study. 
The system combines a few techniques, such as an 
extended Kalman filter (EKF) and a parameter estimation 
method that uses an equivalent circuit model of the 
secondary battery. When externally measurable current, 
voltage, and temperature are inputted in the system, it 
outputs the estimates of various state quantities of the 
battery.

3-2	 Estimation of the SOC of battery 
The equivalent circuit model shown in Fig. 3 was used 

to estimate the state quantities of a battery. When a battery is 
charged/discharged, the voltage changes due to a rapid 
(about several tens of milliseconds) reaction and slow 
(between 10 and 20 milliseconds to a few minutes) reaction. 
The rapid reaction is caused by an electrolyte resistance and 
charge transfer resistance, while the slow reaction is derived 

from an increase in diffusion resistance. In the equivalent 
circuit model used for this study, the rapid reaction was 
approximated by Ra, the sum of a resistance component and 
electrolyte resistance. The diffusion phenomenon inside the 
electrode, which causes the slow reaction, was represented 
by the parallel circuit of Rb and Cb. 

For the parameters of the equivalent circuit model 
shown in Fig. 3, the following approximation formulas 
(identification formulas) (1) through (5) hold.(4) 

Ut(k) = b0･i(k) + b1･i(k-1) - a1･Ut(k-1) + f ..........  (1)
b0 = Ra ....................................................................  (2)
b1 = Ts･Ra/(Rb･Cb) + Ts/Cb - Ra .........................  (3)
a1 = Ts/(Rb･Cb) - 1 ................................................  (4)
f = (1 + a1)Uocv .....................................................  (5)

where, Ut: terminal voltage, i: charge/discharge current, Ts: 
measuring period, k: an integer representing measuring 
time point

In this model, θ = (b0, b1, a1, f) is defined as an 
unknown parameter for estimating θ using the forgetting 
factor iterative least square method. Once θ is estimated, 
parameters Ra, Rb, Cb, and Uocv can be determined from 
formulas (6) through (9), which are derived from the 
inverse operation of formulas (1) through (5).

Ra = b0 ....................................................................  (6)
Rb = (b1 - a1･b0)/(1 + a1) ......................................  (7)
Cb = Ts/(b1 - a1･b0)  ..............................................  (8)
Uocv = f /(1 + a1) ...................................................  (9)

To estimate SOC, a sequential computation is carried 
out by applying the equivalent circuit parameters, which 
are obtained according to the above procedures, to the 
battery model for EKF. The open circuit voltage Uocv, 
which is a component of the linear regression formula (1), 
is a physical variable that varies depending on the state of 
charge (SOC). In this study, we obtained a value by the 
following procedures and used it as a substitute for the 
Uocv. First, we estimated the SOC one period before EKF. 
Subsequently, we calculated the value by substituting the 
estimated SOC into the SOC – OCV relation. 

In this model, the parameter estimation error increases 
when the absolute value of the current is small or the 
change amount is small. As a measure to minimize the esti-
mation error, we added a judgment/treatment procedure to 
the model.

4. In-Vehicle Evaluation

We installed in a commercial electric vehicle (travel 
distance: over 70,000 km) the state estimation unit incorpo-
rated with the battery state estimation algorithm discussed 
in the preceding section, and carried out an in-vehicle eval-
uation of the unit by inputting sensor information on the 
on-board battery.

Figure 4 shows the graph of the current and voltage 
(the average of all cell voltages) measured when the test 
electric vehicle was driven in an urban area for about 2.5 
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hours. The battery repeated discharging (negative value) 
when it is used to drive the vehicle and charging (positive 
value) when it stored the regenerative energy. Finally, the 
current was maintained within the approximate range of 
-250 to + 60 A. The average cell voltage dropped from 
about 4.1 V, which was measured when the vehicle started 
running, to about 3.8 V due to charging and discharging.

In this study, we estimated the state of each of the 
cells connected in series to each other in the on-board 
battery pack, using the above current and the voltage of 
each cell. An example of the estimation result for the 
battery equivalent circuit model parameter of a cell is 
shown in Fig. 5. This figure shows the time dependence of 
the estimated value of solution resistance Ra of the battery, 
which is one of the battery equivalent circuit model param-
eters relating to rapid reaction. After the initial estimation 
value of Ra was calculated when the predetermined time 
passed after the test electric vehicle was driven, the Ra was 
estimated at given time intervals. As a result, the estimated 
Ra converged with time to a finite value. 

The Ra of the battery, when it was new, was prelimi-

narily measured under the same temperature condition as 
that for Ra estimation. It was confirmed from the Ra esti-
mation result that the internal resistance increases as the 
battery deteriorates.

The full charge capacity (FCC) of the battery used for 
this study was also calculated from the travel data of the 
test electric vehicle. The calculated FCC was used as an 
input value for EKF, the next calculation step. The SOH-Cs 
of individual cells were determined from the ratio of calcu-
lated FCC to the full charge capacity of the battery that was 
measured when it was new. The result is shown in Fig. 6. 
The SOH-Cs of individual cells varied in the approximate 
range of 67 to 74% and their capacity retention rates also 
differed depending on the usage environment and the char-
acteristics of individual cells, as shown in Fig. 6.

Subsequent to the above procedure, we substituted a 
group of estimated parameters into the battery equivalent 
circuit model to sequentially estimate the SOC of each 
battery cell using the EKF method. An example of the SOC 
estimation result for a cell is shown in Fig. 7. The battery 
equivalent circuit model achieved a satisfactory SOC esti-
mation result as shown in this figure. In particular, the root 
mean square error (RMSE) of the estimated SOCs was less 
than 1% with respect to the true SOC value that was deter-
mined from the accurately measured coulomb count, and 
the maximum error fell within 2%.
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It was confirmed that the states of each cell estimated 
as above can be periodically uploaded to the server through 
an on-board communication unit as battery state data and 
used to control the state of the battery installed in the elec-
tric vehicle.  

5. Conclusion

In association with the recent growing demand for 
batteries for electric vehicle applications, we have devel-
oped a LiB state estimation unit. Test results confirmed that 
the new unit can estimate with a high degree of accuracy 
the SOC, SOH, and other state quantities of each cell of the 
battery installed in a commercial electric vehicle. We have 
also established a system that can store the estimated 
battery states in a server as battery state data. 

We will continue the study on the establishment of a 
battery reuse system and server-stored information utiliza-
tion system both based on the newly developed battery IoT 
infrastructure system.   
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Technical Terms
＊1	� State of charge (SOC): A capacity available in a 

battery pack or system. It is expressed as a percentage 
of rated capacity.

＊2	� State of health (SOH): The actual physical condition 
of a battery in comparison with a completely new 
battery (100%).
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