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1. Introduction

The vacuum is defined as “the state of the space filled
with the gas, the pressure of which is lower than that of
the atmosphere” in JIS Z 8126 (Vacuum technology -Vo-
cabulary). The vacuum technologies have found a wide
variety of industrial applications depending on the pres-
sure level (Table 1).

Table 1 shows that the pressure of vacuum ranges over
10 to the 14th power, and that the technologies, equipment
structure and specifications, tasks to be solved, and know-
how  needed for the specific range differs from one another.

In this paper, the author first conducted a theoretical
analysis of vacuum evacuation in the viscous flow, which
is usually regarded as a basic technique, and so not much
is mentioned in general vacuum texts. Next he deduced
the exact solution of the equations, and found answers in
two extreme cases. 

The two cases are: 1) in the case when the pipe’s re-
sistance can be neglected,  2) in the case when the pipe’s

resistance dominates the phenomena.  
The author also introduced the notion of “transfer-

ring pressure” and showed that the general evacuation
curve, which includes case 1) and 2), was explained to-
tally. The result of the analysis of case 2), which is not
mentioned usually, is very simple and also interesting. He
also mentioned its applications and attentions at the last.

2. Categories of Vacuum

2-1  Categories by the pressure
JIS Z 8126 defines the pressure ranges of vacuum as Table 2.

The author must note that these categories are easy to
observe and also easy to understand intuitively, but do not
represent actual physical phenomenon (kinetic state of gas
molecules) and so are inadequate to physical analyses. 

2-2  Categories by the kinetic state of gas
In order to analyze vacuum phenomena, categories

by the kinetic (flow’s) state of gas are necessary. Its bound-
aries are actually inexact, but it is usually classified into 3
categories in Table 3.
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Table 1. Vacuum technologies classified by the pressure

Vacuum categories Pressure ranges (Pa)

Low vacuum

Medium vacuum

High vacuum

Ultra high vacuum

Atmosphere ～ 100

100 ～ 0.1

0.1 ～ 10－5

Less than 10－5

Table 2. Pressure ranges of vacuum(1)
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The reason why these categories are important is that
‘conductance,’ which is an important index of vacuum
evacuation, changes drastically depending on them. In
this paper, the author analyzes the viscous flow (laminar)
region. But before that, basics of Table 3 is explained first
in the next section.

3. Basics of Vacuum

3-1  Mean free path
The gas is a group of many molecules. Each of the

molecules moves randomly and with various speeds, the
average of which is defined by the molecules’ type and
temperature (at room temperature, ca. 500 ~ 1500 m/s).
Since the number of molecules are usually very large
(2.7E22 pcs/L, at room temperature), they repeat mutual
collisions at a high rate. The average distance between
one collision to the next is called the ‘mean free path.’ 

It is known that the mean free path λ [m] is de-
scribed as follows(3).

Here, P [Pa] is the pressure, T [K] is the tempera-
ture, d [m] is the diameter of the molecule, and k [J/K]
is the Boltzmann’s constant. 

If one assumes that T = 300 [K] and the gas is nitrogen,
then the molecule’s diameter d [m] is 0.37 [nm](5),(6).

(The value is almost the same, if the gas is atmosphere.)
3-2  Viscous flow and molecular flow

As Fig. 1 (a) shows, when the pressure is high, colli-
sions between molecules are dominant. As one can see in
Equation (2), when the pressure decreases, the mean free
path gets longer, and eventually there is a case when the

collisions between molecules are less than those of mole-
cules and the wall (See Fig. 1 (b)). 

Here, we distinguish those cases as follows:
(a) viscous flow
(b) molecular flow

3-3  Index of flow: Knudsen number and PD
In Fig. 1, when D [m] is defined as the diameter of

the pipe (or chamber), one can see that the flow is viscous
when λ << D, and is molecular when λ >> D. So if non-di-
mensional number K = λ/D is introduced, those condi-
tions are K >> 1 and K << 1, respectively. This K is called
Knudsen number. In practical use, it is often the case
when K < 0.01 is regarded as viscous, and K > 0.3 as mo-
lecular.

And when we put these relations into Equation (2),
we get

Viscous flow : PD > 0.68 [Pa･m]
Molecular flow : PD < 0.02. 
In practical design of the vacuum system, these rep-

resentations are easier to grasp. 
3-4  Conductance

When gas flows in a pipe, resistance caused by it is
called ‘evacuation resistance,’ and its inverse is called ‘con-
ductance.’ In a schematic diagram as Fig. 2, let us call the
pressures at both ends P1 and P0 [Pa], and flow rate Q
[Pam3/s]. Then the conductance C [m3/s] is expressed as

Pipe’s conductance both in viscous flow and in molec-
ular flow has been calculated theoretically, as in Table 4.

One can see the points:

λ = — ≒ ··························(1)
kT

√2̄πd 2P 
—3.11×10-24T

d 2P

λ = 6.8 ×10-3/ P ·············································(2)

Q = C (P1 –P0) ···············································(3)

K : Knudsen number: Index of viscous/molecular flow.    
 K = λ/D, λ: mean free path (m), D: diameter (m)
Re : Reynolds number: Index of turbulent/laminar flow.
 Re = Dvρ/η, D: diameter (m), v: flow speed (m/s), 
 ρ: density (kg/m3), η: viscosity (Pa·s)
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Table 3. Vacuum categories by the kinetic state of gas
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Dia-
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D

Fig. 1. Viscous vs. molecular flows

C

Q
P1 P0

Fig. 2. Schematic diagram of conductance
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· Viscous flow: is proportional to average pressure and 4th

power of D.
· Molecular flow: is independent from the pressure, but

is proportional to the 3rd power of D.
As for the conductance of the intermediate flow,

taken the molecular conductance as 1, an approximate
equation(3)

is advocated. (See Fig. 3)

According to Fig. 3, it is enough to think that the
lower limit of viscous flow is PD ≒ 0.3 ~ 0.4.

3-5  Evacuation speed & time (simple calculation)
Let us think a simple evacuation system as in Fig. 4. We

will evacuate the chamber (the volume V [m3]) by a pump
(pumping speed = S [m3/s]), connected with a pipe (the
conductance C [m3/s]). In elementary texts, the answer is
to solve the next Equation (4), by simply omitting the pipe’s
conductance (since it is large enough), or by thinking that
the effective pumping speed Se is about 0.8 S.

When it is integrated, we get

After solving Equation (5) with the initial condition
t = 0, P = P0, we will get

These two Equations(6),(7) are simple and clear
enough, but they have a problem with the prerequisite.

That is, as described in section 3-4, the pipe’s conduc-
tance C is proportional to the average pressure. In the above
calculation, an assumption is made that the C is large
enough, or just its effect is 80%. But what will happen, if it
can not be neglected? Or is there any exact answer? In this
paper, the author will consider this general and exact case.

4. General Answer to the Evacuation Calculation
in Viscous Flow

4-1  Introduction of basic equation
For introducing the basic equation, let us redefine

the physical parameters as in Fig. 5.

As described in section 3-4, in a viscous flow the
pipe’s conductance C is proportional to the average pres-
sure. So let us call the ratio of the conductance to the
pressure ‘conductance coefficient’ Cc [m3/sPa]. 

From Table 4, in a room temperature & atmosphere,

,where D [m] is the pipe’s diameter, L [m]

is the length of it.
As in Fig. 5, let us define that S0 is the pumping

V·ΔP = –Se·P ·Δt ··········································(4)

ln (P ) = – — · t + const. ·································(5)
Se
V

{ P = P0·exp (–Se· t / V ) ······························(6)

t = 2.303 · — log (—) ······························(7)
V
Se

P0

P

—1+201·PD + 2647·(PD)
2

1 + 236·PD

Viscous flow Molecular flow

Conductance
C [m3/s]

—1349·D
4·P

L
—121·D

3

L
P= (P1+P0)/2 [Pa],  D: Diameter [m],  L: Length [m]

Table 4. Conductance(2) of (long) pipe

Volume
V [m3]

Pumping Speed
S [m3/s]

Pipe’ s Conductance
C [m3/s]

pump

Fig. 4. Simple evacuation system

Volume
V [m3]

Pumping Speed
S0 [m3/s]

Pressure
P0(t)

Pressure
P(t) [Pa]

Pipe’ s Conductance
C [m3/s]

Pump

C = CC･{P(t) + P0(t)}/2,   CC: Conductance Coefficient

Fig. 5. Evacuation system in viscous flow
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Fig. 3. Relative conductance, as a function of PD
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speed, P0(t) is the pressure at the pump inlet, P(t) is the
pressure of the chamber and is a function of time t. We
will set the assumptions below.
・The ultimate pressure of the pump is small enough,

and can be neglected.
・The chamber is large enough, so that the pressure in it is

uniform, and the volume of the pipe can be neglected.
・Leak and out-gassing in the system can be negligible.
・The flow is viscous, at least in the region of our concern.

Let us try to get P(t), starting P(t) = P0 at t = 0, on the
conditions above.

When we name the flow rate in the pipe as Q(t)
[Pam3/s], from Equation (3) we get,

And from the definition of the pumping speed, we get

And, from the material balance that the pressure drop
per unit hour in the chamber is equal to the flow rate, we
get the next equation.

When we put Equation (9) to (8) and (10), we get

From Equation (11),

And putting Equation (13) to (12), we get

Our first aim is to solve this differential Equation (14) on
the initial condition of t = 0, P(t) = P0.
4-2  Deduction of the general solution

Luckily we can solve Equation (14) analytically.
Here, we put 

We put Equation (15) into (14) and get

After integrating Equation (18), we get

Here, from a formulary(7),

From Equations (20) and (21), we get

Here,                             

Let us solve Equation (22), on the initial condition t = 0
and P(t) = P0 .

When we put                      ,we get 

Note that these are the general solution of the Equation (22). 
4-3  Two extreme cases

Since                

has the unit of [s] and appears by the form of t/τ, we can
safely assume that it is a ‘time constant.’ In the same way,

has the unit of [Pa] and so we can assume that it is some

–V · — = Q (t ) ···········································(10)
dP
dt

{ P (t )2 –P0 (t )2 = — S 0 P0 (t ) ·························(11)

·························(12)

2
Cc

–V · — = S 0 P0 (t )
dP
dt

P0 (t ) = – — +     —   + P (t )2(     )2

····················(13)
S 0

Cc

S 0

Cc√¯

P (t ) = — · x (t ) ··········································(15)
S 0

Cc

— — = –1 +   1+ x (t )2
···························(16)

–V
S 0

dx
dt √¯

·············(17)Here, we put                  (time constant)  — = τV
S 0

– τ — = –1 +   1+ x (t )2  ······························(18)
dx
dt √¯

τ∫ — = ∫— ·································(19)
dx –dt

1+ x 2    –1  √¯

Left hand side of (19) ＝ ∫ — dx
x 2

1+ x 2    +1  √¯

········(22)— + ln   x +   1+ x 2    – — = — –Ax
–   1+ x 2   

x
1

τ
– t√¯ √¯(           )

P (t ) = — x (t ), P0 = — x 0 , τ = —S 0

Cc

S 0

Cc

V
S 0

Q (t ) = S 0 ·P0 (t ) ·············································(9)

— · — = — +     —   + P (t )2
·············(14)

–V
S 0

dP
dt

S 0

Cc

–S 0

Cc
(     )2

√¯

P (t ) = — x (t )S 0

Cc

P0 = — x 0
S 0

Cc

A = — – ln  x 0 +   1+ x 0
2

x 0
·········(23)

1+   1+ x 0
2   √¯ √¯(             )

— = — – ln  x  +   1+ x 2   –A
x

·········(24)
1+   1+ x 2   √¯ √¯(             )t

τ

τ = —V
S 0

—S 0
Cc

= — + ln  x +   1+ x 2     – —
x

··········(20)
–   1+ x 2   

x
1√¯ √¯(             )

Right hand side of (19)= ···(21)∫— = — –A(constant)τ
–dt

τ
– t

·····················(8)

Q (t ) = C · (P (t ) –P0 (t ))

 = — (P (t )2–P0 (t )2 )Cc

2

→ P (t )2–P0 (t )2 = — ·Q (t )2
Cc
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kind of typical pressure. From now on, we put

,

and call this as ‘transferring pressure.’ With this, Equations
(23) and (24) are expressed:

(Note that P is a function of time t.)
We can say that the pressure is normalized by the

transferring pressure Π. In general, since P0 is atmos-
pheric pressure, P0 >> Π can be concluded in many cases.

Here we examine two extreme cases.
【Case 1】In the case of  P >> Π
（Equation (26) holds true automatically.）

【Case 2】 In the case of  P << Π

4-4  Interpretation of the general solution
Let us try to interpret the two cases in the previous

section. 
1) In the case when the transferring pressure Π = S0/CC is

normal (or moderate). In this case, when one starts
evacuation from the atmosphere, first the pressure de-
creases exponentially to time (as in case 1). When the
pressure decreases enough lower than the transferring
pressure, the pressure decreases inversely proportional
to time, independently to the initial pressure (as in
case 2). The pressure when these two cases come across
virtually is the transferring pressure Π. 

2) In the case when the pipe’s diameter is large enough,
and so the transferring pressure is small and almost
lower than the limit of the viscous flow. In this case,
there is no actual case 2 state, but almost all the evacu-
ation time the case 1 happens. That is, the pressure de-
creases exponentially to time. This is the state that the
author described in section 3-5, and also that usual vac-
uum texts describe in them. 

3) On the other hand, there is a case when the pipe’s di-
ameter is too small and so the transferring pressure is
too high to almost reach the atmosphere. In this case
the case 1 does not happen, but all the time of evacu-
ation the pressure decreases inversely proportional to
time (case 2). This is the case when the pumping speed
is masked by the resistance of the pipe. The evacuation
time is the function of only the volume V and the con-
ductance coefficient Cc, and is independent of the ini-
tial pressure or pumping speed (Cf. Eq. 30).

In the general evacuation of viscous flow, all three
states (1 to 3) can be appeared. We must note that the
state 2), as described in texts, is not the only one; in the
state 1) and 3), the fact that the region when ‘the pressure
decreases inversely proportional to time’ exists, is very
note-worthy. 

In Fig.6 these states are demonstrated graphically.
Here, L = 3 [m], V = 10 [L], S0 = 200 [L/min], P0 = 1e5 [Pa].

Three typical curves (1 to 3) are plotted on the
graph. The lower limit of viscous flow is PD = 0.3 .

4-5  Measured example
Figure 7 shows a measured example.
V = 8.6 [L], S0 = 180 [L/min], L = 7.5 [m], D = 7.53

[mm]
(3/8” tube, thickness 1 mm), P0 = 1e5 [Pa] (atmos-

phere)

∏ = —S 0

Cc

··················(25)

— = — –  ln  — +   1+ (P/ ∏)2    –A
(P/ ∏)

1+   1+ (P/ ∏)2   
∏

P√¯ √¯(             )t
τ

A = — –  ln  — +   1+ ( P0 / ∏)2    
(P0 / ∏)

1+   1+ ( P0 / ∏)2   
∏

P0√¯ √¯(             )

— ≈  1 – ln  —   –  1 – ln  —   = ln  —
∏

2P
∏

2P0t
τ (    ) (    ) P

P0(    )
······(27)

{ {} }

······(28)Namely, P  ≈ P0  exp  – —   = P0  exp  —
V

–S 0·t(       )(    )t
τ

················(30)

················(29)

{
— ≈ — – ln (1) – A ≈ —

2
P

2∏t
τ P / ∏

P0  ≈ ∏, A ≈ 1 + √2̄ – ln (1 +√2̄ ) ≅ 1.53

∴

P ≈ — =  — · —2∏ ·τ
t

1
t

2·V
Cc

P0  >> ∏, —  >>  – A ≒ ln (—) –1
2P0

∏
2∏

P

Namely,

In the case of

In the case of
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Fig. 6. Calculation of three types of evacuation

············(26) is valid in general.So (    )A ≈ 1 – ln  —
2P0

∏



5. Applications and Attentions

5-1  Application
One may think that the case when the pressure de-

creases inversely proportional to time is meaningless, for
the evacuation takes time only. But it is not always so.
When one evacuates a chamber with a large pipe from the
atmosphere, a turbulent flow occurs at the start. This
causes troubles by scattering particles in the chamber in
many cases. To prevent this, it is a standard technique to
start evacuation slowly with a small pipe (Fig. 8). 

At this time, one can answer the question “How long
does it take to the pressure when the flow comes to lami-
nar, with what size of the pipe is suitable for this?,” using
equations described above. If one uses too small pipes, it
may take too much time. Sometimes there is a case that
two channels are necessary for the slow piping. 

5-2  Attention
Figure 9 is a redrawn graph of Fig. 6, with the linear

horizontal axis and the logarithmic vertical axis.
One may notice that the curve 1) is not linear but as-

ymptotic to the x-axis. 
If one believes elementary texts’ description that the

roughing evacuation curve should be linear in a semi-log
graph, it is a serious mistake. One may try to search leak-
age which actually does not exist. Of course, it is not nec-

essary. In this case, it is simply that the pipe’s diameter is
too small, if the slow evacuation is not your intention. 

6. Conclusion

In the world of vacuum industry, descriptions in texts
about viscous flow evacuation is limited, probably because
it is thought to be rather trivial. 

In this paper, the author analyzed it and found that
what is thought to be simple is actually not so simple. He
introduced the notion of ‘transferring pressure’ and
showed that the evacuation curve in a viscous flow is first
exponential, and then inversely proportional to time. In
particular,  when the pipe’s resistance dominates, the fact
that “the pressure decreases inversely proportional to
time” is simple and important. It is strange that there is
virtually no text which clearly points out this fact. 

The solution deduced mathematically this time has a
rather complicated form, and is not so easy to grasp. But
nowadays when computer use is ordinary, it can be a use-
ful tool when used with a spread sheet  software for mak-
ing graphs or simulations. 

It is the author’s pleasure that this paper be some
help for the people concerned with vacuum industries. 
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