Document #: TR-21238B Issued #: Mar. 29th, 2023

G.652.D/G.657.A1

PureBand™-R

Bend Insensitive Single-Mode Optical Fiber

Sumitomo Electric Industries, Ltd. (SEI) offers a bend-insensitive single-mode optical fiber "PureBand™-R" made by the Vapor Phase Axial Deposition (VAD) method, enabling customers to construct simple and attractive wiring with superior bending performance. The fiber, made of a germanium doped silica core and a silica cladding, complies with ITU-T G.657.A1 and ITU-T G.652.B and D. A dual-layer acrylate is coated over the cladding to provide high product reliability and allows easy splicing. The fiber supports access networks, including last one-mile applications such as FTTH, due to its excellent bending performance while maintaining compatibility with conventional SMF.

Fiber Optical Specifications

Attenuation

Attenuation at 1310 nm \leq 0.35 dB/km Attenuation at 1383 nm* \leq 0.35 dB/km Attenuation at 1550 nm \leq 0.20 dB/km Attenuation at 1625 nm \leq 0.23 dB/km

Point Discontinuity (PD)

Point discontinuity at 1310/1550 nm ≤ 0.05 dB

Bending Induced Attenuation

Dending	THUUCCU A	ccciiaacion	
Mandrel	Number	Wavelength	Attenuation
Radius	of Turns		
10 mm	1	1550 nm	≤ 0.75 dB
10 mm	1	1625 nm	\leq 1.5 dB
15 mm	10	1550 nm	\leq 0.25 dB
15 mm	10	1625 nm	\leq 1.0 dB
16 mm	1	1550 nm	\leq 0.05 dB
25 mm	100	1310 nm	\leq 0.05 dB
25 mm	100	1550 nm	\leq 0.05 dB
30 mm	100	1625 nm	$\leq 0.05 \text{ dB}$

Cut-off Wavelength

Cable cut-off wavelength (λ_{cc}) \leq 1260 nm

Mode Field Diameter (MFD)

MFD at 1310 nm $9.2 \pm 0.4 \mu m$

Chromatic Dispersion (CD)

Zero dispersion wavelength 1300-1324 nmZero dispersion slope $\leq 0.092 \text{ ps/nm}^2/\text{km}$ CD at 1550 nm $\leq 18 \text{ ps/nm/km}$

Polarization Mode Dispersion (PMD)

Max. individual fiber PMD** ≤ 0.1 ps/rkm PMD link design value*** ≤ 0.04 ps/rkm

Geometrical Specifications

Glass Geometry

Core/Clad concentricity error $\leq 0.5 \mu m$ Cladding diameter 125.0 $\pm 0.7 \mu m$

Cladding non-circularity $\leq 0.7\%$ Fiber curl radius $\geq 4.0 \text{ m}$

Coating Geometry

Coating diameter (Uncolored) 245 \pm 10 μ m Coating diameter (Colored) 250 \pm 15 μ m Coating-Cladding concentricity \leq 12 μ m

Mechanical Specifications

Proof lest		
Proof stress level	0.86 GPa (1.2%, 120 kpsi)	
C		

Coating Strip Force (F)F (peak) $1.3 \text{ N} \le \text{F} \le 8.9 \text{ N}$ F (average) $1 \text{ N} \le \text{F} \le 5 \text{ N}$

Dynamic Tensile Strength

Unaged (median; 0.5 m) \geq 3.8 GPa (\geq 550 kpsi) Aged (median; 0.5 m) \geq 3.0 GPa (\geq 440 kpsi)

<u>Fatigue</u>

Fatigue 20 (nominal value)

Environmental Specifications

Environmental Test Conditions Induced Attenuation at 1310,1550,1625 nm Temperature cycling -60° C to $+85^{\circ}$ C ≤ 0.05 dB/km

Temperature Cycling -60° C to $+85^{\circ}$ C ≤ 0.05 dB/km Temperature Humidity cycling -10° C to $+85^{\circ}$ C/98%RH ≤ 0.05 dB/km

Water immersion $+23^{\circ}\text{C} \leq 0.05 \text{ dB/km}$ Dry heat $+85^{\circ}\text{C} \leq 0.05 \text{ dB/km}$ Damp heat $+85^{\circ}\text{C/85\%RH} \leq 0.05 \text{ dB/km}$

^{*} After H₂-aging in accordance with IEC 60793-2-50

^{**} Measured by loosely coiled fiber

^{***} Since PMD value may change when fiber is cabled, actual individual fiber PMD and actual PMD link design value in a cable shall be confirmed by cable manufacturer. Under appropriate cable design, SEI's "PureBand™-R" specification supports network design requirements for a 0.20 ps/rkm of maximum PMD link design value specified by ITU-T G.652.D and G.657.A1.